Intramolecular Arene Trapping of Pyran-4-one Derived Zwitterions: A Two-Step Synthesis of Tetrahydrobenz[e]inden-1-ones

F. G. West* and Duke W. Willoughby

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received May 7, 1993

Summary: Pyran-4-ones bearing pendant arene traps undergo efficient photolytic conversion to transient oxyallyl zwitterions, which then cyclize onto the arene in an intramolecular electrophilic aromatic substitution to yield tetrahydrobenz[e]indenones.

The rapid assembly of polycyclic skeletons from simple precursors has for many years remained an important goal in synthesis. Examples abound of application of polycyclization reactions to the synthesis of steroids and triterpenes,¹ sesquiterpenes,² and alkaloids.³ Recently, we have investigated the synthetic potential of the intriguing photochemical rearrangements of 4-pyrones.^{4,5} We have previously reported that photochemically generated oxyallyl zwitterions can be efficiently trapped by pendant hydroxylic^{5a} and olefinic^{5b} nucleophiles, leading to bicyclic ethers, diquinanes, or hydrindans in a single step from simple precursors.⁶ Aromatic rings would also be desirable internal carbon nucleophiles, since trapping ortho to the tether would lead directly to functionalized tricyclic skeletons corresponding to the steroid BCD rings (eq 1).⁷ In addition to two strategic carbon-carbon bonds,

two new carbocyclic rings would be formed. We report

here our initial results in the area of intramolecular electrophilic aromatic substitution using photochemically generated oxyallyl electrophiles.

Substrate preparation could be effected in one step via benzylation at the C-2 methyl group of simple di-, tri-, or tetrasubstituted 4-pyrones (eq 2). Low-temperature

 γ -deprotonation^{5,8} with lithium diisopropylamide in THF/ DMPU, followed by alkylation with the requisite halides, gave 1a-f with a two-carbon tether separating the arene and the incipient electrophile.

Photolyses were routinely carried out in trifluoroethanol solution at room temperature through quartz (Table I). In the case of phenyl-substituted 4-pyrone 1a, a modest yield of nucleophilic trapping to give tricycle 2a was observed, but the major products were isomeric 2-pyrones 3a and 3a' in a ca. 2.5:1 ratio. No evidence for solvent capture of the zwitterion was seen. Interestingly, the yield of 2a proved to be concentration dependent (entries 1-3), with optimum levels of cyclization occurring when the starting

(B) (a) Smith, A. B., III; Scarborough, R. M., Jr. Tetrahedron Lett.
1978, 4193. (b) Yamamoto, M.; Sugiyama, N. Bull. Chem. Soc. Jpn.
1975, 48, 508.

^{(1) (}a) Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. J. Am. Chem. Soc. 1993, 115, 515. (b) Corey, E. J.; Reid, J. G.; Myers, A. G.; Hahl. R. W. J. Am. Chem. Soc. 1987, 109, 918. (c) Johnson, W. S.; Chen, Y.-Q.; Kellogg, M. S. J. Am. Chem. Soc. 1983, 105, 6653. (d) van Tamelen, E. E.; Hwu, J. R. J. Am. Chem. Soc. 1983, 105, 6653. (d) van Tamelen, E. E.; Hwu, J. R. J. Am. Chem. Soc. 1983, 105, 2490. Reviews: (e) Sutherland, J. K. In Comprehensive Organic Synthesis, Vol. 3: Carbon-Carbon s-Bond Formation; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Chapter 1.9. (f) Jung, M. E. Tetrahedron 1976, 32, 3.

^{(2) (}a) Harring, S. R.; Livinghouse, T. J. Chem. Soc., Chem. Commun.
1992, 502, 503. (b) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev.
1991, 91, 1237. (c) Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759. (d) Tanis, S. P.; Chuang, Y.-H.; Head, D. B. J. Org. Chem. 1988, 53, 4929.
(3) (a) Heathcock, C. H.; Hansen, M. M.; Ruggeri, R. B.; Kath, J. C.

^{(3) (}a) Heathcock, C. H.; Hansen, M. M.; Ruggeri, R. B.; Kath, J. C. J. Org. Chem. 1992, 57, 2545 and following papers. (b) Fevig, J. M.; Marquis, R. W., Jr.; Overman, L. E. J. Am. Chem. Soc. 1991, 113, 5085.
(c) Heathcock, C. H.; Kleinman, E. F.; Binkley, E. S. J. Am. Chem. Soc. 1982, 104, 1054.

⁽c) Theathroug, C. M., L. M., McDonald, F. E. Ibid. 1990, 112, 4956. (b)
(4) (a) Wender, P. A.; McDonald, F. E. Ibid. 1990, 112, 4956. (b)
Barltrop, J. A.; Day, A. C.; Samuel, C. J. J. Am. Chem. Soc. 1979, 101, 7521. (c) Pavlik, J. W.; Pauliukonis, L. T. Tetrahedron Lett. 1976, 1939. (d) Keil, E. B.; Pavlik, J. W. J. Heterocycl. Chem. 1976, 13, 1149. (e)
Pavlik, J. W.; Kwong, J. Ibid. 1973, 95, 7914. (f) Ishibe, N.; Sunami, M.; Odani, M. J. Am. Chem. Soc. 1973, 95, 463. (5) (a) West, F. G.; Fisher, P. V.; Willoughby, C. A. J. Org. Chem. 1990,

 ^{(5) (}a) West, F. G.; Fisher, P. V.; Willoughby, C. A. J. Org. Chem. 1990,
 55, 5936. (b) West, F. G.; Fisher, P. V.; Arif, A. M. J. Am. Chem. Soc.
 1993, 115, 1595.

⁽⁶⁾ Olefin trapping of 1,5-zwitterions derived from 2,5-cyclohexadienones:
(a) Schultz, A. G.; Plummer, M. J. Org. Chem. 1989, 54, 2112.
(b) Schultz, A. G. Pure Appl. Chem. 1988, 60, 981. For other examples of synthetic applications of dienone photochemistry, see:
(c) Pirrung, M. C.; Nunn, D. S. Tetrahedron Lett. 1988, 29, 163.
(d) Matlin, A. R.; Kim, K. Ibid. 1989, 30, 637.

⁽⁷⁾ For other examples of carbocycle formation via intramolecular electrophilic aromatic substitution, see: (a) Majetich, G.; Zhang, Y.; Feltman, T. L.; Belfoure, V. Tetrahedron Lett. 1993, 34, 441. (b) Majetich, G.; Zhang, Y.; Feltman, T. L.; Duncan, S., Jr. Tetrahedron Lett. 1993, 34, 445. (c) Trost, B. M.; Ghadiri, M. R. J. Am. Chem. Soc. 1984, 106, 7260. (d) Venuti, M. C. J. Org. Chem. 1981, 46, 3124. (e) Ireland, R. E.; Baldwin, S. W.; Welch, S. C. J. Am. Chem. Soc. 1972, 94, 2056. Reviews: (f) Heaney, H. In Comprehensive Organic Synthesis, Vol. 2: Additions to C-X π -Bonds, Part 2; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Chapter 3.3. (g) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In Comprehensive Organic Synthesis, Vol. 3: Carbon-Carbon σ -Bond Formation; Trost, B. M., Fleming, I., Eds., Pergamon: Oxford, 1991; Chapter 1.8, pp 323-327.

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	R ⁸	x	Y	conditions ^b	yield 2° (%)
1	1 a	Me	Me	Me	Н	H	Α	32 ^d
2	la	Me	Me	Me	н	Н	В	24 ^d
3	la	Me	Me	Me	H	Н	С	21 ^d
4	1 b	Me	Me	Me	OMe	н	В	68
5	1c	Me	Me	Me	OCH	$_{2}O$	В	75
6	1 d	Me	Me	н	OCH	20	A	57
7	le	Me	H	Me	OCH	$_{2}O$	В	11e
8	1 f	Н	Н	OMe	OCH	20	В	f
9	1 a	Me	Me	Me	н	Η	D	g

^a Standard photolysis procedure: A solution of substrate in dry trifluoroethanol (TFE) was placed in a quartz tube and deoxygenated by bubbling a slow stream of dry N₂ gas through for 20 min. The reaction vessel was clamped 25 cm from a Hanovia 450 W medium-pressure Hg lamp and irradiated at ambient temperature for 0.5–5 h. ^b Conditions: (A) 0.015 M 1 in TFE; (B) 0.005 M 1 in TFE; (C) 0.025 M 1 in TFE. (D) 0.005 M 1 and 0.3 equiv of H₂SO₄ in TFE. ^c Isolated yields after chromatography. Satisfactory IR, ¹H and ¹³C NMR, and combustion analysis or HRMS were obtained for all substrates and photolysis products. ^d 2-Pyrones 3a and 3a' were also isolated in varying quantities: 51% (entry 1), 48% (entry 2), and 62% (entry 3). ^e Starting material was recovered in the case of 1e (50%). ^f Solvent adduct 4f (36%) was the only zwitterion derived product isolated. ^e Dienone 5a was isolated in 33% yield.

concentration of 1a was 0.015 M. Since formation of 2a and 3a/3a' are both unimolecular processes, it is unclear why their apparent rates of formation should vary reproducibly with the concentration of 1a. We are currently attempting to determine the origins of this surprising effect.

The isolation of substantial amounts of 2-pyrones⁴ suggested that a simple, monosubstituted arene might not be sufficiently nucleophilic to effectively trap the transient intermediate prior to rearrangement. To test this notion, we then examined substrates 1b,c, bearing more electronrich arene traps (entries 4-5). In the event, trapping products 2b,c were obtained in good yield, along with only trace amounts of 3. It should be noted that optimum yields in these cases were obtained under the more dilute conditions.

While arene substitution is clearly important, pyrone ring substitution is also significant. When trisubstituted substrates 1d,e were examined (entries 6-7), a dramatic difference in efficiency of conversion was observed. Thus, while irradiation of 2,5,6-trisubstituted pyrone 1d led to tricycle 2d in good yield, the isomeric 2,3,6-trisubstituted pyrone le remained largely unconsumed even after extended photolysis, indicating an apparent barrier to formation of the zwitterion.9 On the other hand, 2,3disubstituted substrate 1f was rapidly consumed (entry 8), perhaps as a result of substitution of the electronreleasing methoxy group on the incipient zwitterion, but furnished solvent adduct 4f as the only zwitterion-derived product. The yield of trapping product under dilute conditions (5 mM) could be improved somewhat (33 vs 24%) in the case of 1a by inclusion of 0.3 equiv of protic acid (entry 9). We reason that the acid may increase the electrophilicity of the zwitterion by oxygen protonation, leading to a greater preference for the cyclization pathway.¹⁰ Under the acidic conditions, elimination of water occurred and dienone 5a was the product isolated. Similar enhancements by catalytic acid were not apparent with other substrates.

In summary, we have reported a significant new class of cyclization reactions based upon intramolecular capture of transient, electrophilic oxyallyl zwitterions by pendant arenes. Easily prepared 4-pyrone substrates can be converted in one step to fused tricyclic products, in the process forming two strategic carbon-carbon bonds and greatly increasing molecular complexity.¹¹ The cyclization products may be useful precursors to natural or unnatural steroids. Further applications of 4-pyrone-based methodology will be reported elsewhere.

Acknowledgment. We thank the National Institutes of Health (GM44720-01) for generous support of this work, along with the University of Utah Research Committee, the American Cancer Society Institutional Research Grant No. IN-178, and the American Cancer Society for a Junior Faculty Research Award (F.G.W.). Mass spectrometry facilities were funded by NSF (CHE-9002690) and the University of Utah Institutional Funds Committee.

Supplementary Material Available: Experimental procedures for the preparation and photolysis of substrates 1a-fand physical data for 1a-f, 2a-e, 3a, 4f, and 5a (4 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽⁹⁾ In related olefin trapping studies, 5b several substrates were inert to extended photolysis when $R^2 = H$.

^{(10) (}a) We have observed a similar improvement in *inter*molecular zwitterion capture by water with inclusion of acid: West, F. G.; Fisher, P. V.; Gunawardena, G. U.; Mitchell, S. *Tetrahedron Lett.*, in press. (b) For a related enhancement by acid in the case of tropone [6 + 2]-photocycloadditions, see: Feldman, K. S.; Come, J. H.; Kosmider, B. J.; Smith, P. M.; Rotella, D. P.; Wu, M. J. J. Org. Chem. 1989, 54, 592.

⁽¹¹⁾ Bertz, S. H. J. Am. Chem. Soc. 1982, 104, 5801.